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Mass transfer in filtration or evaporation of a substance from a deepened surface in a highly porous
layer and in escape into vacuum is calculated based on the Monte Carlo method. It is assumed that
the porous layer contains individual inclusions in which the porosity is a random quantity. Account
is taken of the possibility of the gas molecules being absorbed on the surface of the particles of the
porous body. The angular distributions of molecules emerging from the layer are obtained. The non-
monotonic character of the distribution of the molecules absorbed which is caused by the presence of
the inclusions is revealed.

Formulation of the Problem. As is well known [1], the microinhomogeneities of porous bodies
which are caused by their chaotic structure and have a scale of about the pore size contribute to the addi-
tional transfer of heat and mass, which is reflected in the effective coefficients of transfer in porous media.
However, in porous bodies there can be inhomogeneities caused by the irregular distribution of the porosity.
Such inhomogeneities, whose scale is much larger than the scale of microinhomogeneities, can be considered
to be random owing to the insufficient information on the structure of a porous medium, which leads to the
irregularity of the average characteristics.

To solve problems in media with random inhomogeneities one sometimes employs approximate ana-
lytical methods [2, 3]. However, wider opportunities are opened up in the case of employment of numerical
methods that are based on direct statistical modeling.

In the kinetic theory of gases, to describe the processes of transfer in highly porous homogeneous
media one employs the dust-laden-gas model [4–6] in which the porous body is modeled by a homogeneous
system of chaotically distributed stationary spherical particles of radius r. The mean free path of the gas
molecules relative to the stationary particles of the porous body is determined by the expression

λε = 
4
3

 
ε

1 − ε
 r , (1)

while the number of these spheres in unit volume of the body with a porosity ε is equal to

nε = 
3 (1 − ε)

4πr3  . (2)

In the present work, we calculated mass transfer in filtration or evaporation of a substance from a
deepened surface in a model highly porous layer of thickness Lε and escape into vacuum through the porous
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layer. Unlike [7], it is assumed that this layer is not homogeneous and contains individual inclusions in which
the porosity (or the number of modeling spheres in unit volume) is a random quantity. We assume that the
number of spheres K in unit volume of the inclusions obeys the discrete Poisson distribution [8]

P (K) = 
aK

K !
 exp (− a) , (3)

where a = nε
_

i
 is the average number of spheres in unit volume of the ith inclusion (mathematical expecta-

tion), which differs from nε of the basic mass. In this case, nε
_

i
 is related to ε

_
i by formula (2). The location

and dimensions of the inclusions are considered to be prescribed here.
The thickness of the porous layer (Fig. 1) was taken to be equal to Lε = 5λ0 in the calculations.

Two inclusions with dimensions 2 × 10 × 0.7 cm each and a distance of 1 cm between them were located
in the porous layer. Consideration was given to three positions of the inclusions over the layer height: the
upper position from z = 1.05 cm to z = 1.75 cm, the lower position at the evaporation boundary z = 0, and
the middle position. The inclusions were located along the x axis in the following manner: the first inclu-
sion was located on the portion of the axis from x = 1 cm to x = 3 cm, while the second one was located
on the portion from x = 4 cm to x = 6 cm. The porosity of the basic mass was ε = 0.9 and r = 0.13λ0;
the average porosity of the inclusions was ε

_
i = 0.7–0.98. The calculated region had dimensions 10 × 10 ×

1.75 cm.
Method of Solution. Free-molecular approximation (case 1). It is taken that the gas and the skeleton

of the porous body have the same temperature; the regime of one-component flow of the gas is assumed to
be free-molecular (i.e., the gas molecules collide only with modeling spheres) and the law of reflection of the
gas molecules from the spheres is assumed to be mirror or diffuse. From the deepened surface z = 0 the gas
molecules arrive at the porous body (for example, filtration of the gas through the boundary z = 0 or evapo-
ration of the substance from this surface).

The problem is solved by the Monte Carlo method in the mean-free-path approximation. The proce-
dure begins by drawing the initial position of a "test particle" (a "beam" of actual molecules) on the deepened
surface z = 0 in accordance with the law of a uniform distribution.

Fig. 1. Geometric scheme of the problem.
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In this problem, for definiteness we will consider first the mass transfer through the porous layer of
the molecules of the vapor of chromium in its evaporation from the surface z = 0 at T = 1830 K. The pres-
sure of the saturated vapor pe of chromium at this temperature is pe(T) � 0.1 mm Hg (λ0 = 0.35 cm), while
the density of the flux Ie0 of molecules evaporating from the surface is determined by the expression

Ie0 = 
pe (T)

√2πmkT
 = ne √ kT

2πm
 . (4)

The test particles used in the numerical procedure are related to the flux of actual evaporating molecules in
the following manner. If S is the area of the evaporation surface and 75,000 situations are drawn, this means
that the small area S is subdivided into 75,000 cells; each cell will contain one test particle and it corresponds
to Ie0S ⁄ 75,000 actual molecules.

The initial direction of the test particle determined in relation to the normal at a point on the evapo-
ration surface by the polar angle θ and the azimuthal angle ϕ is drawn from the diffuse law

θ = arcsin √Rθ  ,   ϕ = 2πRϕ

(i.e., the distribution of the flux of emerging particles obeys the cosine law), where Rθ and Rϕ are random
numbers uniformly distributed on the interval [0, 1]. Thereafter the mean free path is drawn from the formula
[8]

λ = − λε ln (1 − Rλ) , (5)

here Rλ is a random number uniformly distributed on the interval [0, 1] and λε is determined from (1); then
the mirror (in this variant) reflection of the test particle from a sphere is drawn. If we arrive at any inclusion
in the process of drawing of λ according to (5), the transition from the basic mass to the inclusion must be
carried out with allowance for the dependence of λε on the distance [8].

The number of spheres in the inclusions is drawn according to the Poisson formula (3). The drawing

of each K (then εK = 1 − 
4
3

 πr3K) is followed by the drawing of λ = −λK ln (1 − Rλ), where λK = 
4
3

 
εK

1 − εK
 r.

We note that, according to the Poisson formula, the quantity a is equal to nεi

− in each drawing of K.

Taking into account intermolecular collisions (case 2). From the above values of the initial data of
the example in question and from the definition of the Knudsen number Kn = λ0

 ⁄ λε. it follows that Kn
C  0.64. Therefore, strictly speaking, we must also take into account the collisions of molecules inside the
porous body. As will be shown below, this is of particular importance in the problem with the absorption of
the gas molecules inside the porous body.

In case 2, after drawing the initial position and direction of the test particle the magnitude of the
mean free path is drawn from the following exponential law [7]:

λ = − λ
__

 ln (1 − Rλ) ,   where   
1

λ
__ = 

1

λε
 + 

1

λ0

 . (6)

Expression (6) is used to determine a new position of the test particle, while the form of the process is drawn
from the relation

wε = 
λ
__

λε
 = 

λ0

λ0 + λε
 ,   w0 = 1 − wε , (7)

1477



where wε is the probability of collision of a molecule with a sphere and w0 is the probability of collision of
a molecule with a molecule. To take into account intermolecular collisions we employ the approximate pro-
cedure in accordance with which first consideration is given to free-molecular flow with allowance for the
collisions of the test molecules just with the skeleton of the porous body. Then, in each spatial cell of the
porous body, we determine the average direction of molecules passing through this cell (field distribution). At
the next step, we already take into account the collisions of the molecules with each other; the direction of
motion of a test molecule upon collision with a field molecule is determined in accordance with the law of
elastic interaction. Next, if we arrive at an inclusion (with allowance for the dependence of λ on the dis-
tance), first the number of spheres in the inclusion is drawn according to the Poisson formula (3) and then
the mean free path and the form of the process are drawn according to formulas (6) and (7) respectively
(however, in (6) and (7) we use λε

_
i
).

Absorption of the gas molecules. In this variant, we will consider that filtration occurs through a po-
rous layer of rarefied gas whose molecules can enter into a heterogeneous reaction of first order on the sur-
face of stationary spherical particles. By a heterogeneous reaction of first order we mean [6, 9] any process
involving a solid surface which leads to a change in the important properties of molecules with a probability
Ψ (for example, to a change in the chemical composition of a particle, the absorption of a particle by the
wall, etc.). The molecules are mirror or diffusely reflected from the sphere surface with a probability (1 − Ψ).

Discussion of the Results. Figure 2 gives the densities of unilateral fluxes of molecules I+ ⁄ Ie0 emerg-
ing into vacuum through the surface of a uniform porous layer z = Lε as functions of the layer thickness. This
relationship is determined by both the methods of kinetic theory [7] and the mean-free-path approximation
which is used in this work. Consideration has been given to the above-mentioned variant of evaporation of a
substance from the surface z = 0; therefore, the fluxes I+ are referred to the quantity Ie0 determined according
to (10).

Comparison of our results in case 2 to the data of [7] shows that the employment of the approximate
procedure for taking into account intermolecular collisions for Kn of about 1 is satisfactory, since the differ-
ence in the above-mentioned results is partially caused by the fact that we considered the mirror law of re-
flection of the molecules from the spheres while in [7] consideration has been given to the diffuse law of
reflection.

Fig. 2. Relative flux I+ ⁄ Ie0 of the gas molecules emerging from a homo-
geneous porous layer vs. dimensionless thickness of the layer Lε

 ⁄ λ0: 1)
free-molecular flow; 2) flow with account for intermolecular collisions;
3) data of [7].
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As is seen from Fig. 2, the molecular fluxes I+ ⁄ Ie0 in case 2 are larger than the analogous quantities
in case 1; in particular, for Lε

 ⁄ λ0 = 5 they are 1.6 times larger. This is attributed to the fact that in case 2
the appearing macroscopic velocity of ordered motion of the gas substantially increases the total molecular
flux for the intense escape into vacuum in question.

Figure 3 presents the distribution of the number of test particles N emerging from a porous layer
(both homogeneous and nonhomogeneous) at a certain angle θ

__
 to the x axis (angular distributions). The total

number of the situations drawn is 75,000.
It is of interest to note that in case 2 the distribution N(θ

__
) in the homogeneous porous medium is

more "complete" than in the nonhomogeneous layer. The reason is that in the flux with a macroscopic veloc-
ity of ordered motion (case 2) the velocities of a considerable part of the molecules are oriented in the direc-
tion of visible motion. The presence of inclusions denser than the basic mass (ε

_
i = 0.7) at the upper boundary

of the porous layer decreases the number of such molecules, since in these inclusions the Kn number in-
creases (λε decreases), i.e., the fraction of molecules colliding with solid spheres increases. For the same rea-
son the influence of the macroscopic velocity on the total molecular flux decreases (as compared to the basic
porous mass): the ratio of the total number of test molecules in case 2 (N

__
2) to the analogous quantity in case

1 (N
__

1) becomes equal to N
__

2
 ⁄ N
__

1 C 1.3, whereas for a homogeneous porous layer this ratio is equal to 1.6, as
has been noted above.

It is noteworthy that the total number of molecules N
__

 emerging from the porous layer through the
boundary z = Lε depends on the location of inclusions inside the layer. As the site of location of the inclu-
sions with ε

_
i = 0.7 is displaced from the surface z = 0 to the boundary z = Lε the quantity N

__
 increases. For

the inclusions with ε
_

i = 0.98 the situation is the reverse: N
__

 has the highest value when the inclusions are
located at the boundary z = 0 and the lowest value in the case of location of the inclusions at the boundary
z = Lε. This is attributed to the fact that the denser inclusions at the boundary z = 0 reflect a smaller number
of molecules back to the surface z = 0.

Also, of interest are the local angular distributions of molecules emerging from the boundary z = Lε,
for example, between the inclusions (Fig. 4) or over each inclusion. Figure 4 gives the distributions of the
ratios γ of the number of molecules passed between the inclusions in the corresponding angular interval to
the total number of molecules passed between the inclusions. It is seen from the figure that in the free-mo-
lecular approximation (case 1), a considerable scatter in values is observed in the angular distribution between

Fig. 3. Distribution of the number of test particles N emerging in the
corresponding angular interval through the boundary z = Lε (ε

_
i = 0.7): 1)

homogeneous medium; 2) nonhomogeneous medium; 3) free-molecular
flow in a homogeneous medium; 4) the same in a nonhomogeneous me-
dium.
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the inclusions, while taking into account the intermolecular collisions (case 2) significantly smooths out this
distribution, bringing it closer to the corresponding curve for a homogeneous porous medium.

For the inclusions with ε
_

i = 0.98 in case 1 we observe the "forward" extension in the local angular
distributions owing to the presence of a part of the molecules emerging from the depth of the inclusions
directly into vacuum without collisions with the spheres.

Thus, for the upper location of the inclusions the local angular distributions can differ from the angu-
lar distributions of molecules emerging through the entire boundary z = Lε from the entire porous layer.

Now we pass to the discussion of results of calculating the filtration of the gas into vacuum in the
presence of a heterogeneous reaction of first order on the surface of the modeling spheres (absorption of the
gas molecules). Since in the process in question the vanishing of particles occurs, the drawn number of situ-
ations was taken to be rather large (1 million.). Figure 5 gives the angular distributions of the number of test
molecules N emerging through the boundary z = Lε from the entire porous layer in absorption of the mole-
cules with Ψ = 0.2 in it and in the presence of inclusions denser than the basic mass (ε

_
i = 0.7).

As is seen from Fig. 5, in the homogeneous porous medium, the difference in the numbers of mole-
cules N

__
 passed through the porous layer in cases 1 and 2 is more considerable than in Fig. 4. This is attrib-

uted to the fact that in case 2, first, the macroscopic velocity of ordered motion of the gas occurs (as has

Fig. 4. Distributions of the ratios γ of the number of test particles emerg-
ing from the boundary z = Lε between the inclusions in the correspond-
ing angular interval to the total number of molecules emerging between
the inclusions (ε

_
i = 0.7): 1) homogeneous medium; 2) nonhomogeneous

medium; 3) free-molecular flow in a nonhomogeneous medium.

Fig. 5. Distributions of the number of test molecules N emerging in the
corresponding angular interval through the entire boundary z = Lε in the
presence of molecular absorption (ε

_
i = 0.7, Ψ = 0.2): 1) homogeneous

medium; 2) nonhomogeneous medium; 3) free-molecular flow in a ho-
mogeneous medium; 4) the same in a nonhomogeneous medium.
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been noted above), which increases the resultant molecular flux and, second, in this case we have a decrease
in the fraction of molecules colliding with the surface of the solid spheres and hence a decrease in the num-
ber of molecules absorbed. As a result, with molecular absorption (Ψ = 0.2), the ratio N

__
2
 ⁄ N
__

1 is approximately
equal to 3.4, whereas without absorption (Ψ = 0) N

__
2
 ⁄ N
__

1 is approximately equal to 1.6.
In the presence of inclusions denser than the basic mass (ε

_
i = 0.7), the ratio N

__
2
 ⁄ N
__

1 decreases and in
the variant in question is equal to N

__
2
 ⁄ N
__

1 C 2.2 (for Ψ = 0, N
__

2
 ⁄ N
__

1 C 1.3). The reason is that the Kn number
in such inclusions increases (λε decreases), i.e., the fraction of molecules colliding with the solid spheres
increases. Therefore, in the inclusions, more molecules are absorbed and the influence of the macroscopic
velocity on the total molecular flux decreases (as compared to the basic mass).

If we compare the total molecular fluxes in case 1 for a homogeneous porous medium and a medium
with inclusions, their difference is small, since the difference in the mechanism of absorption of the mole-
cules in the inclusions and in the basic mass decreases significantly in the absence of the macroscopic veloc-
ity.

In the inclusions with ε
_

i = 0.98, the Kn number decreases, i.e., the fraction of molecular collisions
with the solid spheres decreases. Therefore, in the inclusions, fewer molecules are absorbed and more mole-
cules are transmitted. Moreover, the macroscopic velocity in the total molecular flux is growing in impor-
tance.

Thus, in the problems of filtration of rarefied gases in porous media in the presence of heterogeneous
physicochemical transformations in them, it is of prime importance to take into account intermolecular colli-
sions even for rather high values of Kn (Kn � 1).

Another important feature of the process in question is the nonmonotonicity of the distribution of the
molecules absorbed over the porous body.

In particular, if the porous body in question is subdivided into five equally large layers along the z
direction, we have the following distribution (Fig. 6).

The largest number of molecules (Nabs) is absorbed in the lower layers located near the particle
source (the surface z = 0); with distance from the surface z = 0 the number of molecules absorbed decreases.
However in case 2 in the upper layers with inclusions (the fourth and fifth layers), the situation is different:
in the fourth layer, the number of absorbed molecules Nabs is even larger than the corresponding number in
the third layer. Further, as the evaluations show, Nabs in the fourth and fifth layers in case 2 amounts to 33%
and in case 1 to only 12% of the total number of molecules absorbed. This is attributed to the fact that, as
has been noted above, in denser inclusions the Kn number increases and the fraction of molecules colliding

Fig. 6. Values of the numbers of absorbed test molecules Nabs in layers
along the z direction (ε

_
i = 0.7, Ψ = 0.2).
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with the solid spheres increases, i.e., the influence of the macroscopic velocity decreases (as compared to the
basic mass) and the number of absorbed molecules increases. On the whole, the number of molecules ab-
sorbed in the porous body in case 2 is smaller than in the free-molecular case.

Table 1 gives the distribution of the absorbed molecules over ten layers which subdivide the porous
body along the x direction; the first inclusion is located in layers 2–3, while the second inclusion is located
in layers 5–6. We note that here we have the nonmonotonicity of the distribution of the absorbed molecules
Nabs along the x axis in both case 2 and free-molecular case 1. In case 2, the number of molecules absorbed
between the inclusions (and near them) is smaller than in the analogous volumes with inclusions. In the free-
molecular case, the situation is the reverse: the number of molecules absorbed between the inclusions (and
near them) is larger than in the analogous volumes with inclusions. The reason is the presence of numerous
reflections of molecules from the denser inclusions and collisions of them with solid spheres beyond the in-
clusions.

More rarefied (than the basic mass) inclusions with ε
_

i = 0.98 are also characterized by the presence
of the nonmonotonicity of the distribution of absorbed molecules along the x axis. However here, unlike the
variant with denser inclusions (ε

_
i = 0.7), in cases 1 and 2 fewer molecules are absorbed in the inclusions than

in the analogous volumes between the inclusion and near them. In case 2 this is related to a more substantial
(than in the basic mass) influence of the macroscopic velocity on the total molecular flux in the inclusions,
while in case 1 the reason is the emergence of molecules from the inclusions with their upper location with-
out collisions.

Thus, we have revealed the nonmonotonicity of the distribution of absorbed molecules in a porous
body, which points to the possibility of intensifying the physicochemical transformations and the processes of
transfer in the vicinity of the inhomogeneities of a porous medium.

NOTATION

x, y, z, coordinate axes; ε, porosity; ε
_

i, average value of the porosity in the ith inclusion; r, radius of
the stationary spheres; nε, number of spheres in unit volume of the body with a porosity ε; Lε, thickness of
the porous layer; λε, mean free path of the molecules relative to the stationary spheres; λ0, gasdynamic free
path of the molecules; Kn, Knudsen number; Ψ, absorption probability of the molecules; m, molecular mass;
k, Boltzmann constant; pe(T), pressure of saturated vapor at T; Ie0, density of the flux of evaporating mole-
cules; N(θ

__
), number of test molecules emerging from the porous layer at an angle θ

__
 to the x axis; N

__
, number

of test molecules emerging from the entire porous layer.
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